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Executive summary

The present document is a deliverable of the MusicBricks project, funded by the European Commission’s Directorate-
General for Communications Networks, Content & Technology (DG CONNECT), under its Horizon 2020 research and
innovation programme.

We present here the description of the latest part of the processing and visualization tools designed for musical
Tangible User Interfaces (TUIs) of Work Package 4. The general aim is to provide user with tools to facilitate the use of
Tangible User Interfaces, and in particular the wireless inertial measurement units developed, such as the R-loT
developed by Ircam. This deliverable describes the general possible architectures of the Musical TUIs processing
library. In particular, this description completes the previous deliverable (D4.2) by describing how the motion
processing library presented in DE4.2 can also be embedded in the R-loT device (or other microcontroller). We also
present new advanced processing and visualization tools. Different examples illustrate how these tools can be used
for smart mapping using machine learning for gesture recognition. Overall, all the technologies of WP4 have been
upgraded from TRL4 to TRL5/6 and can be combined with the APIs of WP3 to create new applications.
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1 Introduction

We present here processing and visualization tools designed for musical Tangible User Interfaces (TUIs). These
components correspond to elaborated versions of the basic concepts and early developments described in the
documents D4.1 and D4.2.

1.1 Context and objectives

Concerning Tangible User Interfaces (TUIs), we particularly focus on movement sensing based on wireless inertial
measurement units (IMU), which requirements were described in D4.1. An example of such device is the Ircam
wireless motion sensor called R-IoT that has been largely used at MusicBricks events and incubations. This device has
been improved and duplicated for the MusicBricks events, which allowed us to validate its current version at TRL6
level (see description in section 3).

Based on user feedbacks at MusicBricks events and incubation, we have also extended the software tools to be used
with such Tangible User Interfaces (TUIs) (see the overview in section 2). In particular, we developed two types of
software tools that can be used with the R-IoT or similar devices.

First, we present an ensemble of modular processing components that can be embedded in R-loT (or compatible
Arduino microcontrollers). The implemented functionalities follow the ones that were first developed in the Max
environment (Cycling’ 74) and described in D4.2. This choice has been motivated by feedback during the MusicBricks
hackathons and workshops, showing these movement descriptors would gain to be also implemented in the wireless
device. This allows for an easier integration in different platforms and software. This development corresponds thus to
upgrading our initial motion analysis library from TRL4 to TRL6 as planned in the description of work (DoA), and
corresponds to the necessary preparation towards the Industry Testbeds. This library is described in section 5.

Second, as planned in the DoA, we developed advanced movement processing and visualization tools (referred as TUI
Smart Mapping and GUI interfaces). We released new max objects (external and abstraction) and applications
examples that are described in section 6.

Note that all partners implied in WP4 (IRCAM, UPF-MTG, TUW, STROMATOLITE) have also built projects and examples
with the R-1oT interfaces and software. We also summarize these developments in this document (which were also
reported in D3.3).

2 Updating Tangible User Interfaces and software

The development of WP4 on Musical Tangible User Interfaces has been presented at the MusicBricks events as a set
of tools called Gesture Sensors for Music Performance. As shown below with its specific logo, the WP4 technologies
complement the different APIs described in WP3:

Gesture Sensors for Music Performance

e R-loT wireless motion sensors for building musical tangible interfaces and instruments

e Real-time motion analysis and visualization to easily map sensor data to musical processes

We summarize in Table 1 (similarly to the table of section 4 in D3.1) in more details the different components that
have been developed and/or improved for MusicBricks, reported in this deliverable (D4.3) and the previous one
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(D4.2). These “bricks” have been used to build example applications (including also the APIs of the other partners, as
described in section 6). The TRL improvements are detailed in the sections 4-6.

Programming Real-Time  Links for Installation and

Tools Platform ?
Environment Usage Usage
R-loT
i A latf
wireless ny platform Any software
sensors connected to a with OSC yes
Wi-Fi router http://ismm.ircam.fr/devices/
(hardware)
) https://github.com/Ircam-
WinDoAs/OSX S
/ Max ¥ RnD/RloT/tree/master/max
Motion
Analysis
IDE:
Low-level Energia
descriptors Arduino https://github.com/Ircam-
WinDoAs/OSX es
/ (C code) ¥ RnD/RloT/tree/master/energia
to embed
processing in
microcontrollers
http://forumnet.ircam.fr/produ
ct/gesture-sound-en/
Advanced http://forutTne':).lrcarr/w.fr/produ
. mubu-en
Motion WinDoAs/OSX yes gimubu-en/

M
Analysis and o

Visualization
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3 R-loT description

Following closely the requirement that were set in D4.1, the R-loT module allows for sensing movement, processing
and wireless transmission. The R-loT embeds a ST Microelectronics’ 9-axis sensor with 3 accelerometers, 3 gyroscopes
and 3 magnetometers, all 16 bit. The data are sent wirelessly (Wi-Fi) using the OSC protocolz. The framerate is
adjustable, and was found reliable at 200Hz, which guarantees a low enough latency for musical applications (as
specified in D4.1).

The core of the board is a Texas Instrument Wi-Fi module with a 32 bit Cortex ARM processor that execute the
program and deals with the Ethernet / WAN stack. It is compatible with TI’'s Code Composer and with Energia3, a port
of the Arduino® environment for Tl processors.

3.1 Improvement and readiness level:
In the MusicBricks project, this board has been updated and improved:

e Easy Configuration of the R-loT by accessing a web page hosted by the module where you can configure its
network behaviour & parameters

e Update of the USB micro serial port based on FTDI R232. The R-loT can be programmed using the Energia IDE
using OSX or WinDoAs (see section 5 for the description of the firmware).
On line documentation, accessible at http://ismm.ircam.fr/devices/
Testing and evaluation have been carried on in the MusicBricks hackathons and during incubation projects.
External duplication has been successively carried on by an electronics manufacturer

Overall, the TRL level have been improved from TRL4 to TRL6.

3.2 Final Specifications

34 x 23.5 mm — 7mm thick

CC3200 processor — 80 MHz — 32 bits — 256 kB of RAM — 80 mA while transmitting Wi-Fi.
2.4 GHz Wi-Fi — Open Sound Control Oriented

9 DoF motion sensor LSM9DSO — 3D accel + gyro + magneto
On-board web server for configuration

On-board general purpose tactile switch

2 GPIO + 2 analog inputs (or GPIO) exported

12C bus SCL & SDA pins exported

On-board li-ion / li-po charger via uUSB

At least 6 hours of runtime with a 16340 li-ion cell

Battery voltage sample and report via Wi-Fi

USB UART for serial port debugging and configuration

! http://www.st.com/web/en/catalog/sense _power/FM89
2
http://opensoundcontrol.org/
3 http://energia.nu/
* http://www.arduino.cc/
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Short to enter
FLASHING /
L Prog mode

Antenna

B
q3

Charging
LED (red)

Diag / power
LED (blue)

Batt + uUSB

M/N: CC3200MODR1M2AMOB
T77H534.00
FCC I1D: 264-CC3200MODR 1

IC : 451-CC3200MODR 1

2202018364-05L0
447M203126E

Power switch
(off-left / on-right)

Figure 1a. Picture of the R-loT wireless motion sensing. The 3D accelerometers, gyroscopes, magnetometers are
located in the back.

GP switch

€ ) @ 192.168.1.1/paramstype=static&ssid=riot&security=None&pass=&ipi1 68&ipi3=1t

wBe ¥ A 480 0 =

-Hider | Email |_) Fournisseurs | | StarWars | Culture | ) Home

{SOUND MUSIC MOVEMENT} INTERACTION — itrcam
entre
Pompidou

@ Blog Flety @ R2 Builders @i Music Bricks U pagesjaunes.fr Z¥ Google Maps {_} Google [ Congés IRCAM {

R-IoT Configuration *SAVED* - OK

Module Information

MAC: 20:c3:8f:f4:55:55

ID: 0

Firmware: R-IoT v1.1 - IRCAM 2015

Network Configuration

TYPE: =

SSID: riot
SECURITY:

PASSWD:

1P: 192.168.1.40
DEST IP: 192.168.1.100
GATEWAY: 192.168.1.1
SUBNET MASK: 255.255.255.0
PORT: 8888

MODULEID: 0
SAMPLE RATE: 10

Battery=4.14 volts

Figure 1b. Configuration webpage of the R-loT

4 Architectures for motion data processing

The figures below the two possible options for processing the data streamed from wireless motion sensors such as the
R-1oT (described in section 3). In figures 2a and 2b, we show the two complementary options for calibration and

processing: implemented on the computer side and/or on the sensor side (embedded processing at the
microcontroller level).
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Figure 2a (left) and Figure 12b (right). Data processing architecture using wireless sensor. The wireless sensor and
computer are represented by the dotted rectangles. a) The calibration and processing is performed on the computer
side. b) In this case, the calibration and processing is performed on the sensor side (embedded processing at the
microcontroller level).

In the previous deliverable (D4.2), we reported on the motion processing that was only implemented on the computer
side (in the Max environment), corresponding thus to the case of Figure 2a (left). The Max version of the motion
processing library has been improved to include the data sampling rate as parameters, as described in Appendix B.

In this deliverable D4.3, we report first on an equivalent motion processing library that has been ported to embedded
processing on the sensor side, corresponding thus to the case of Figure 2b (right). Globally, the porting of the original
Max library to C code represents a clear improvement of the readiness level for future applications. This is described
in section 5.

Second, we also report on advanced processing and visualization that could not be implemented at the sensor level
due to the limited processing power of the embedded microcontroller and the absence of visualization capabilities. In
this case, only the case of Figure 2a is viable. This is described in section 6.

5 R-loT firmware

This section presents the different firmwares that can be built by assembling the basic firmware with different motion
analysis functions. The code is modular in order to let users to optimize memory and CPU depending on the
applications. These motion analysis functions are based on the Musical TUIs processing library that was described in
D4.2 (mainly from the section metaphors/playing techniques). Appendix A describes in more details the general
principles we used to design embedded motion analysis.
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5.1 Basic Firmware and data fusion

5.1.1 Description
The basic firmware contains all the elements necessary for acquiring the sensor data (9 DoF motion sensor LSM9DSO)
by the CC3200 processor and for enabling the OSC data stream.

5.1.2 Calibration and Data fusion
Calibration of the sensors and the Data fusion allowing to compute the quaternions and Euler angles are also
provided. The data fusion is implemented using the open-source code provided by Sebastian Madgwick5

5.1.3 Basic OSC data streaming and extension
In the basic firmware implementation, the following output parameters are streamed as OSC packets

® /<ID>/raw <11 int data list> that contains the battery voltage, the GP switch state and the raw 9 channels
from the motion sensor (all 16 bit)

® /<ID>/quat <4 float data list> that contains the quaternion computation results based on Madgwick algorithm

® /<ID>/euler <3 float data list> that contains the euler angles computed by the module from the quaternions
mentioned above

® /<ID>/analog <2 int data list> that contains the analog inputs digital conversion
As described in section 5, other parameters and motion features can be streamed as well, if the firmware is completed

by the different modules described below.

5.2 Motion analysis

5.2.1 Acc_Intensity

Description

Computes a quantity related to the “motion intensity” with respect to acceleration. The value is equal to zero when
there is no movement.

Computation

Acc_Intensity is defined recursively (see figure). For an input signal s(t) discretised as the series (s,) , the
corresponding intensity (I,,) is defined as :

I =0
Iny1 = aIn+b8§L2

where s’(t) is the time derivative of s(t) approximated via a centred finite difference of order 2, and a and b are
parameters of the model. It can be easily shown that the general term of the series (I,) can be expressed as a function
of terms of the series s’(t) as follows:

> See http://www.x-io.co.uk/open-source-imu-and-ahrs-algorithms/ for more details
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n

n—i /2

I, =0 E a"'s;
i=1

Here s(t) is the measured acceleration and s’(t) is the jerk, estimated by discrete derivation (centred finite difference
of order 2).

Input/variable used

a_x,a_y,a_z

Output/variable streamed

acc_intensity_norm, acc_intensity_x, acc_intensity_y, acc_intensity_z

0OSC stream (Energia)

/id/acc_intensity [acc_intensity_norm, acc_intensity_x, acc_intensity_y, acc_intensity_z]
Defined variables and methods

Variables: ACC_INTENSITY_PARAM1, ACC_INTENSITY_PARAM?2

Methods: Icm, delta, intensitylD

5.2.2 Gyr_Intensity

Description

Computes a quantity related to the “motion intensity” with respect to gyration. The value is equal to zero when there
is no movement.

Computation

Gyr_Intensity implements the same algorithm as Acc_Intensity but with angular acceleration as input data instead of
acceleration. Here s(t) is the measured angular velocity and (s’,) is the angular acceleration, estimated by discrete
derivation (centred finite difference of order 2).

Input/variable used

8 X, 8.Y,8.2

Output/variable streamed

gyr_intensity_norm, gyr_intensity_x, gyr_intensity_y, gyr_intensity_z

0OSC stream (Energia)

/id/gyr_intensity [gyr_intensity_norm, gyr_intensity_x, gyr_intensity_y, gyr_intensity_z]
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Defined variables and methods
Variables: GYR_INTENSITY_PARAM1, GYR_INTENSITY_PARAM?2

Methods: Icm, delta, intensitylD

5.2.3 still

Description
Detection of a state of stillness

Computation
(e | —— o |
The quantity 1/ is computed. This measure is invariant to an equal shift in all 3 dimensions. As such shifts
generally occurs in gyroscopes (IMU), this measure remains robust over time.
Input/variable used
8 X, 8.Y,8_2
Output/variable streamed
isStill, still_slide, gyr_norm
0OSC stream (Energia)
/Jid/still [isStill, still_slide]
Defined variables and methods

Variables: STILL_THRESHOLD, STILL_SLIDE_FACTOR

Methods: slide, still_cross_product

5.2.4 Spin

Description
Detection of a state of spinning
Computation

The amount of spin is estimated by the norm of the angular velocity vector, for which a threshold is set for detection
of a spinning motion pattern.

Input/variable used
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8 X, 8.Y,8_2

Output/variable streamed

isSpinning, spinDuration

0OSC stream (Energia)

/id/spin [isSpinning, spinDuration, gyr_norm]
Defined variables and methods

Variables: SPIN_THRESHOLD

Methods: magnitude3D

5.2.5 Freefall

Description
Detection of a state of free fall
Computation

The magnitude (Euclidean norm) of the acceleration vector is computed, along with the magnitude of the angular
velocity vector and the magnitude of the angular acceleration vector (obtained via discrete derivation of the angular
velocity). A detected free fall can be linear (acceleration magnitude close to zero) or rotational (angular velocity
magnitude greater than a threshold AND angular acceleration magnitude close to zero).

Input/variable used

a_x,a_y,a_z,8 X8V, 8 2

Output/variable streamed

isFalling, fallDuration, acc_norm

0OSC stream (Energia)

/id/freefall [acc_norm, isFalling, fallDuration]

Defined variables and methods

Variables: FREEFALL_ACC_THRESHOLD, FREEFALL_GYR_THRESHOLD, FREEFALL_GYR_DELTA_THRESHOLD

Methods: Icm, delta, magnitude3D

5.2.6 Shake
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Description
Analysis of accelerometer data for quantification of shaking
Computation

The time derivative of each accelerometer stream is estimated with a centred finite difference of order 2. The
percentage of time this derivative (jerk) exceeds the parameter B within a time winDoA of size  is computed and
averaged over the 3 dimensions (root mean square). The result is then smoothed to give the shaking magnitude.

Input/variable used

a_x,a_y,a_z

Output/variable streamed

shaking

0OSC stream (Energia)

/id/shake [shaking]

Defined variables and methods

Variables: SHAKE_THRESHOLD, SHAKE_WINDOASIZE, SHAKE_SLIDE_FACTOR

Methods: Icm, delta, magnitude3D, slide

5.2.7 Kick

Description
Detection of a “kick”, i.e. sudden movement (referred to as “strike detection” in DE4.1)
Computation

A median filter is applied to the intensity given in input. The difference between the input and the filtered value
triggers a kick detection when exceeding a threshold. A speedgate implements the minimum delay between two kick
detections.

Input/variable used
acc_intensity_norm
Output/variable streamed
isKicking, kick_intensity
0OSC stream (Energia)

/id/kick [kick_intensity, isKicking]
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Defined variables and methods
(In addition to the ones defined in Acc_Intensity)

Variables: KICK_THRESHOLD, KICK_SPEEDGATE, KICK_MEDIAN_FILTERSIZE
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5.2.8 General methods used by several modules (feature.h)

e Least common multiple
int lcm(int a, int b)
e Discrete derivation with centered finite difference of order 2
float delta(float previous, float next, float dt);
e Euclidean normin 3D
float magnitude3D(float x, float y, float z);
e One-pole filter
float slide(float previous_slide, float current_value, float slide_factor);
e Computation of the intensity along/around one axis
float intensity1D(float xnext, float xprev, float intensityprev, float param1, float param2, float dt);
® Cross product between angular velocity vector and (1 1 1) for the module 'still’
float still_cross_product(float x, float y, float z);

6 Advanced processing and visualization

The Max objects we report here complete the Musical TUIs processing library presented in D4.2.

6.1 Metaphors/playing techniques

This section was fully presented in D4.2. Nevertheless, we present here improvement and new features.

First, the functions presented in D4.2 for motion processing have been updated to take into account the framerate as
parameters, as shown in Figure 3. This allows to obtain output results that are independent of the data sampling rate
(considering framerate below the Nyquist rate), which greatly facilitate the porting and adaptation of these functions
to different context. In appendix B, we describe all the changes that must be performed to the initial version.

Second, new functions or implementations have been added for data stream processing in the pipo plugin format
(http://ismm.ircam.fr/pipo-sdk-release-v0-1/, integrated in the MuBu packagee)

pipo.biquad, which implements a biquad filter (as in the max object filtering)
pipo.finitedef, which implements finite difference computation on a data stream, allowing for example for
obtaining in a single step 1st and 2nd order derivatives.

e pipo.lpc, which allows to compute linear predictive coding coefficient on an audio stream or an sensor data
stream.

6 http://forumnet.ircam.fr/product/mubu-en/
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This patchos requires MuBu for Max, ISMM team at IRCAM-Centre Pompidou
froe download at hitp orumnet.rcam friproductimubel

for gesture recognition and mapping, see the folowing objects in the MuBu package:
- g - gesturefoliowing
« mubu.gmm, mubu gy, mubu.xme, _paper.paf

threshold

gyraton-related
ronsay

Figure 3. This figure illustrates all the objects of the Max example (corresponding to metaphor/playing techniques) that
have been updated to take into account the framerate (in green).

6.2 Processing and Visualization

6.2.1 vecdisplay

description

This max external allows for displaying vector and spectrum, with time history displayed on a specific winDoA
input

[1] input data <list of float>
main parameters

display parameters: background, vector and history colors, shape, refresh rate
history size <int>: number of past vector shown in the history winDoA (in frames)

output

none
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vecdisplay

Vector input displayer, with history fopen reference page)
Sound Music Movement Interactions Team - http:/fismm.ircam.fr - @ Ircam- Centre Pompidou 2015

=

Figure 4. Screenshot of the vecdisplay

6.2.2 fftspectrum

description
This max external allows for:

e computing the short fourier transform of a sensor data stream

e displaying the spectrum on a specific frequency range

o applying a filter in the fourier domain by drawing a function on the display
This is useful to design frequency bands that match the frequency content of specific movement patterns: the
obtained movement features corresponding to specific movement frequencies.

input
[1] input data <float or list of float> (regularly sampled)
main parameters
short-term fourier transform: fftsize, hopesize, framerate, fft mode (power, complex, logpower, magnitude),
inputwinDoA (hamm, hamming, blackman, blackmanharris, since, none)
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display parameters: background, vector and history colors, shape, refresh rate

history size <int>: number of past vector shown in the history winDoA (in frames)

output

spectrum, filtered signal

Figure 5. Screenshot of the fftspectrum Max object used for real-time sensor analysis

fftspectrum

FFT analisys of incomig signal, with filtering, display and history ~ (open reference page)

Sound Music Movement Interactions Team - http://ismm.ircam.fr - ® Ircam- Centre Pompidou 2015

mubu.play fitspectrum-help data

scale 0.0.5-0.50.5

2| 512 stream 512
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6.2.3 waveletspectrum

description
This max external allows for:

e computing the continuous wavelet transform of a sensor data stream (Morlet wavelet). The computation is
based on the code developed at IRCAM by Jules Frangoise, which has been implemented here in a single
object with the visualization

e displaying the spectrum (referred to the “scalogram”)

e applying a filter in the frequency domain by drawing a function on the display

This is useful to design frequency bands that match the frequency content of specific movement patterns. The object
is complementary to the fftspectrum object.

input
[1] input data <float or list of float> (regularly sampled)
main parameters

wavelet transform: bands per octave min and max frequencies, wo, delay.

display parameters: background, vector and history colors, shape, refresh rate

history size <int>: number of past vector shown in the history winDoA (in frames)
output

spectrum, filtered signal

waveletspectrum

Online Continous Wavelet Transform {open reference page)

Sound Music Movement Interactions Team - http://ismm.ircam.fr - ® Ircam- Centre Pompidou 2015

Figure 6. Screenshot of the waveletspectrum Max object used for real-time sensor analysis
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6.3 Gesture Recognition and Mapping

All descriptors of the Musical TUIs processing library, including the wavelet and fft analysis we presented above, can
be fed into the different gesture recognition and mapping procedures. In particular the free MuBu for Max library was
made available at the MusicBricks hackathon and used by several participants. We present below two examples.

6.3.1 Movement qualities recognition based on the wavelet analysis

The following patch (mapping_with_wavelet.maxpat) illustrates how the object waveletspectrum can be used in
conjunction with R-loT wireless sensors to enable gesture recognition. The wavelet analysis is performed on the three-
accelerometer axis and input to the gesture follower (gf), which allows for recognition prerecorded examples. In this
case, the wavelet analysis is particularly well suited to recognise movement qualities, in contrast to precise spatial
trajectories. Importantly, the likelihood values related to each movement can be used as continuous parameters that
can be mapped to any continuous sound processing.

. leamn 2 jlearn3 | leamn 4
tolerance $1

gf @maxchannels 128

likeliest

I gestures

likehood

Figure 7. Screenshot of the waveletspectrum Max object used for movement qualities recognition

6.3.2 Gestures or postures recognition using the R-loT sensor

The following patch (riot-gmm.maxpat) illustrates how the R-loT sensor can be used to perform gesture recognition.
Two quaternion parameters are chosen to characterize the orientation of the R-l1oT and are input in the mubu.gmm
object (part of the IRCAM MuBu library that was made available at the hackathon). This is an example of prototypes
that was initiated at a MusicBricks hackathon to provide advanced movement processing.
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gestures

loadmess 0.05 loadmess 500

ﬁ'mubu_gmm

| ’«,
estures validated
ghmugh a stroke gestures number
—

Figure 8. Screenshot of the riot-recognition Max object used for gesture recognition

6.4 Demo: Example of R-loT used with other API

6.4.1 HandsFreesoundMachine

This demo created by UPF-MTG is fully described in D3.3. We just recall here some points that illustrate well how the

technologies developed in WP4 can be used with the APIs of WP3.

In the HandsFreesoundMachine application, the R-loT is used to detect head movements. This was directly
implemented using “kick” detection of the R-loT firmware (see section 5). This allows for setting a tempo and selecting
steps of a drum machine. The sound samples are retrieved directly from Freesound using the FS APl v2, and a voice

interface is used for specifying the search query (using Google API).

This demonstration also illustrates how the R-loT OSC messages can be used in a web application. In this case, a web
server built using Python’s Flask package establishes a web sockets connection with the client browser, which includes
an Open Sound Control (OSC) module. This allows for processing OSC messages received from the R-loT sensor and

sends them to the web browser using the web sockets connection.

All source code for the web application is available online in this Github repository:
https://github.com/MTG/hands-free-sound-machine
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Control the Hands-free Sound Machine using the voice commands: PLAY, STOP, TEMPO, CHANGE #, SEARCH #, CLEAR #

Q
=1

go ahead, I'm listening...

This demo appication has been developed within the
The Hands-4ree Sound Machine is powered by

Figure 9: Left: R-loT used with a Bluetooth headset Right: screenshot of the web application (by UPF-MTG)

6.5 Other applications with Graphical User Interfaces (GUIs)

Other applications with advanced Graphical User Interfaces have been carried on in MusicBricks. For example, the
application Sonarflow developed by TU Wien / Spectralmind is a visual music discovery app for iPad, iPhone and
Android. It features a slick Ul for browsing music by zooming into a colourful world of bubbles which represent genres,
artists or moods and allows discovering new music online from various sources. Through MusicBricks, it is now
available open-source for hacking and extending it. Sonarflow is fully described in D3.3 in section 3.8.

7 Conclusions

This deliverable D4.3, along with the deliverables D4.1 and D4.2, conclude the work of WP4 on Tangible User
Interfaces. This work, and their deployment in the MusicBricks events and incubation projects, allows us to improve
significantly our available technologies, such as the R-loT interface and software for musical interactions and
performance. As planned in the Description of Work, these technologies have been ported from TRL4 to TRL5/TRL6 for
the creative test beds, and are ready to be implemented in Industry test beds (WP6).
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Appendix A

In this section, we introduce a few principles used in the context of real-time em-
bedded programming and how they have been implemented in the data processing
modules. The firmware running on the RloT board is compiled and installed with the
Energia software (similar to Arduino framework), including an integrated development
environment based on the Processing language.

A.1 Elementary blocks

A few concepts are of common use in the specific context of embedded real-time pro-
gramming. We describe below elementary blocks used to tackle some of these issues.

A.1.1 Three dimensions

Since all three spatial dimensions are treated in the same way in many of our data pro-
cessing modules, it appears more convenient to use a 3-dimensional array whenever
variables or data structures correspond to spatial dimensions. In this way, all compu-
tations involving them are implemented using very similar code, and are only differing
by the array index. This should not be less efficient than using variables with different
names, neither in terms of computational time nor for memory use.

A.1.2 Measuring a duration

Another common concern is to measure the duration corresponding to a given state (e.
g. falling, spinning...) Since the state can be current, the duration may be increasing at
each step, depending on the considered state. The idea is to increment the duration
by the sample period value whenever the corresponding state is active. States are
implemented as Boolean quantities (e. g. isFalling.) The following code is generic:



if (Condition){
//Condition for state activity is satisfied
if (isActive == 0){
//State was previously inactive, becomes active
isActive = 1;
//Current time is start time
FirstTimeActive = millis();

}
else {
//State was already active

}
//Update duration
StateDuration = millis() - FirstTimeActive;

}

else {
// State is inactive
isActive = 0;

}

The duration is updated whenever the state is active, which means that it increases
until the state becomes inactive. An alternative option (not implemented) is to update
the duration during the transition from an active to an inactive state, leading to a single
update of the duration, its value being then the total duration of the latest terminated
active state. Some additional conditions can be added, e.g. to include a speedgate as
in the module to avoid unwanted multiple detections of a discrete event (cf.
Section A.2.6).

A.1.3 Storage and use of previous values

One very common issue in real-time programming is the management of previous val-
ues which have to be stored for some time to be used in the near future. An efficient
way to manage previous values is to implement a ring buffer, which minimizes both
memory use and computation time (values are not moved but inserted and read in
place).

In the present implementation, this is realized by storing the concerned values in
an array, the size of which is equal to the number of values to be stored. For example,
if the computation requires values measured at times t,, (current time), t,,_1 (previous
sample) and t,,_», the size of the array should be 3. Moving forward in time by one
step, the required values would be the ones measured at ¢,,+1, t,, and ¢,,_1. Overwrit-
ing the value measured at ¢,,_o with the one measured at ,,,; minimizes memory
use, while not moving the other values minimizes computation time.

In practice, a ring buffer (or circular buffer) can be implemented by manipulating
the read/write access index of a regular array. To simulate the ring, any index calcula-
tion has to be performed modulo the size of the array. Instead of shifting all values in
the array at each new time step, say to the left, and then writing the newly read value
at the right end of the array, one only needs to increment an offset giving the position



of the oldest sample and calculate the other indices relatively to this offset. In order to
avoid overflow errors when having the system running for a long time, the offset can
itself be computed modulo the size of the array. Since several ring buffers of different
size are usually implemented, we chose to use a single offset for all of them, called
LoopIndex, which is computed modulo the least common multiple of all ring buffer
sizes (called LoopIndexPeriod).

A.1.4 Discrete derivation

Discrete derivation was initially performed by linear interpolation over n samples (n =
3 by default). This not only introduces a delay by n/2 samples, it is also diffusive and in-
accurate, especially for a large filter size or when derivating several times successively.
The finite difference method can be used instead, performing discrete derivation with
the possibility of removing completely the delay due to the method (using a backward
method). It can also be used to estimate derivatives of higher order with fair accuracy.
Various aspects of the finite difference method are developed in [1], but only the 1D
formulas lie within the scope of this work. We summarize the principle of the finite
difference method below.

Assuming that a mathematical function f is differentiable at a sufficiently high or-
der (> m), the Taylor series expansion of f at the neighbourhood of any point = can
be written as:

m

fle+h) = Z f"“) +o(h™) (A1)

In the case of a time derivative, h (assumed to be small) is usually the sampling
period. This formula provides an estimate of f at the point  + & using m orders of
derivation at z that are assumed to be known. It can also be written at other neigh-
bouring points such as x — h, x +2h, x — 3h, etc. The finite difference method reverses
the problem: assuming that the values of f are known at a certain number of points, it
uses the Taylor expansion formula at each of these points to define a set of linear equa-
tions that can be combined with each other to estimate the desired f(*) () (which are
not known).

As an illustration, we estimate the first derivative using a backward method over
3 points (z; © — h; x — 2h). The two following equations, resulting from the Taylor
expansion formula, are used:

h? h3
—hf'(@) + 5 [ (@) = =[P (@) +o(h’)  (A2)

2 3
O (@) + T @)~ S O @) o) (A3)

flx—=h) = f(z)
f(x —=2h) — f(x)

Combining them as —2 x(Equation A.2)+§ X (Equation A.3) gives the following re-
sult:

1 3 _ / h? (3) 3
Lfe ) 2+ Dp@) = )~ O ) o)
Whence:
2
F(5e-m =21 -m+ 3@) = )= 0w o)
f'(@) +O(h?)



This gives an estimate of the derivative of f at the point x, at an accuracy order of
2 since the exact value is asymptotically approached within an error of O(h?) when h
approaches 0. In the context of the estimation of the time derivative of a discretized
function, this can be written as:

fr/L ~ Ait <;fn—2 - an—l + ;fu)

Itis clear that the accuracy order can be increased by using more points, giving sev-
eral more equations allowing us to eliminate higher order derivative terms. Naturally,
the same method can be used to estimate f”(x) or higher order derivatives, and that
an estimate of the k-th order derivative will include a factor 1/(At)¥. As explained in
[1], the finite difference method corresponds to the resolution of a linear system to
find the coefficients to apply to a certain number of known samples of the function,
in order to find an estimate of the derivative of desired order, by a required accuracy

order.

A.1.5 Maedian filter

To implement a real-time median filter of size n (odd) in an efficient way, we use an
array median_values of size n to store the n latest read samples, with the follow-
ing loop invariant: the array is sorted in ascending order at the beginning of the loop
(i.e. before inserting a new value). At this point, the current median is located at
median_values[(n-1)/2]. A new value, when first inserted, should be written over
the oldest sample present in the array. Finally, the new sample has to be moved to
the right place, which is accomplished by swapping it with its neighbouring values as
far as is it required.

old new

<

113(2|4]0]|- median_fifo
4 |02 |1]3 median_linking
S|-1p2Q)6 |8 median_values
current
median

Figure A.1: lllustration of the operating principle of the real-time median filter.

In order to keep track of the order in which the values have arrived, a first-in first-
out (FIFO) buffer median_fifo is used. As shown in Fig. A.1, its first element contains
the index at which the oldest sample is located in the array median_values. That is,
the insertion process should begin with the new value overwriting the oldest value, lo-
cated in the array median_values at the index stored at median_fifo[0]. The new



value should then be moved to its correct position to ensure the loop invariant, and this
position should be entered at the end of the FIFO buffer. Considering median_fifo
as a circular buffer as described previously, this only requires to write the new location
(i.e. the index of the inserted value in median_values) in place of the location of the
oldest value before insertion (i.e., atmedian_fifo [0])andincrement the loop index.

In this process, the position of each item swapped with the new value in the array
median_values is modified and should therefore be updated accordingly in the array
median_fifo. To be able to do this, we chose to use a linking layermedian_linking,
allowing bidirectional communication between median_values and median_fifo.
This layer consists in an array median_linking “tied up” tomedian_values, i.e., for
all array index ¢, the value at median_linking[i] corresponds to a piece of informa-
tion regarding the value at median_values[i]. This piece of information is the lo-
cation of the index corresponding to the value median_values[i] in the FIFO buffer
median_fifo. In other words, as illustrated in Fig. A.1, for all array index ¢ we have
the following property:

median_linking[median_fifo[i]] =median_fifo[median_linking[i]] =1.

Other solutions using less memory (here we use 3 arrays of size n) could be used,
but would probably be more expensive in terms of computational time. For example,
it is possible to avoid using median_linking by keeping track of the initial and final
positions of the inserted value, and then perform a loop on median_fifo updating
the values comprised between them.

A.2 Implementation of the data processing modules us-
ing elementary blocks

A.2.1 Spin

Spinning duration is computed as described in Section A.1.2, the active state (spinning)
corresponding to either an angular velocity norm exceeding a predefined threshold
value.

A.2.2 Sstill

The Max object used to smooth the output stream implements the fol-

lowing formula, equivalent to a onepole filter:

LTy — _
yn:ynflJrniynl

Since only one previous value is necessary, this function is not implemented with a
circular buffer as described in Section A.1.3, but only using a single local variable.

A.2.3 Freefall

Fall duration is computed as described in Section A.1.2, the active state (falling) cor-
responding to an acceleration magnitude lying below a predefined threshold, or to a
simultaneous condition of angular velocity magnitude below a threshold and angular
acceleration magnitude above another threshold. Discrete derivation is performed



as explained in Section A.1.4 on gyroscope data to compute angular acceleration. De-
pending on the method used, a certain number of previous values (3 values by de-
fault) have to be stored, which is done using a circular buffer (cf. Section A.1.3). Since
all steps of computation are the same in the 3 spatial dimensions, the method men-
tioned in Section A.1.1 is implemented for the derivation of angular velocity.

A.2.4 Shake

The amount of shaking is basically defined as the amount of time within a given time
window that the jerk (time derivative of acceleration) exceeds a predefined threshold
value. As for the module , a certain number of previous values (n) are
stored to be used in the discrete derivation — this time of acceleration data, in a similar
way for the 3 spatial dimensions.

The considered time window is implemented as a circular buffer of size ny containing
a Boolean value equal to 1 for each of the considered sample where the jerk exceeds
the threshold, 0 otherwise. This is also accomplished in a similay way in each of the 3
spatial dimensions.

Finally, the Max object used to smooth the output stream is used as in the

module , i.e. only using a single local variable. In this case, the congruence
divisor LoopIndexPeriod mentioned in Section A.1.3 is the least common multiple
of ny and ns.

A.2.5 Intensity

Computation of the discrete derivative of either accelerometer or gyroscope data is
performed similarly for the 3 dimensions. Storing previous values is required for this
computation (as explained in Section A.1.4), but also for the integration part (a single
previous value in the 3 dimensions, treated as explained in Section A.1.3 this time).

A.2.6 Kick

The detection of a kick is built on the top of the output stream of the
module with accelerometer data given as input. Therefore, the all aspects developed
in Section A.2.5 are also implemented in the module . Downstream the intensity
computation, a real-time median filter is implemented as explained in Section A.1.5.

The duration of an active “kicking” state is computed as described in Section A.1.2,
in order to implement a speedgate preventing the detection of multiple kicks within
a given time frame. The state is considered as “active” if the difference between the
current intensity and its median computed over a given time window exceeds a prede-
fined threshold value. The generic code used to measure duration is adapted to include
the speedgate, setting the state back to “inactive” only after a certain duration. The
“intensity” of a kick given in output is the maximum value of the input intensity while
the state is active.



A.3 Numerical parameters

The following thresholds and numerical parameters are used in the current implemen-
tation of the data processing modules.

For the module

- detection threshold on angular velocity, set to 200 deg/s

For the module

- detection threshold on the computed cross-product quantity, set to 5000 (deg/s)?

- slide parameter, set to 5

For the module | freefall

- detection threshold on acceleration, set to 0.15 g
- detection threshold on angular velocity, set to 750 deg/s

- detection threshold on angular acceleration, set to 40 deg/s?

For the module

- threshold on jerk, set to 0.1 g/s
- window size, set to 200 samples

- slide parameter, set to 10

For the module

- model parameter a, set to 0.8 for acceleration-related intensity or 0.9 for gyration-
related intensity

- model parameter b, set to 0.1 for acceleration-related intensity or 1.0 for gyration-
related intensity

For the module

- detection threshold on the difference between intensity and its median, set to
0.01

- median filter size, setto 9

- speedgate duration, set to 200 ms
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Appendix B

In this section we show how the different data processing modules depend on the
sample rate of the input data, and how these dependencies can be overcome.

B.1 Spin

B.1.1 Analysis

Since only instantaneous values are used (at t,,), there is no dependency.

B.1.2 Proposed modifications

None. No output stream value is modified.

B.2 Still

B.2.1 Analysis

The only dependency found is due to the smoothing process right before outputting
the stream. This is performed by a object in Max, equivalent to a onepole

filter. The formula for the Max object is:

LTn — Yn—1
Yn = Yn—1 + on  gn—o

The formula for a onepole filter is commonly written as:
Yn = ATy + (1 - a)yn—l

The two formulas are equivalent for « = 1/a.

B.2.2 Proposed modifications

The cutoff frequency f. of the corresponding onepole filter should be invariant, which
determines the filter entirely. The following relationship is verified for a onepole filter:

a = sin <27r£:)



where f; is the sampling frequency.
In the original version of the module, the default parameters are f; =100Hzand a =5
(i.e. a=0.2), hence the original cutoff frequency:

arcsin(0.2)

f. =100 ~3.2Hz

To keep f. constant independently of the sampling rate, keep but
modify « such that:

1 1

o= =
. fe . 100 arcsin(0.2)
sin (Qﬁ—fs> sin (7& )

No output stream value is modified.

B.3 Freefall

B.3.1 Analysis

For the detection of linear free fall, only instantaneous values are used, therefore there
is no dependency.

For the detection of rotational free fall (free spin), a dependency is introduced by the
time derivation of angular velocity (angular acceleration): the value of the derivative
is computed with , which corresponds to an approximation by linear in-
terpolation using previous values over a stencil of size k (k = 3 in the original version).
This means that for a sample arriving at time ¢,,, samples at ¢,,_x+1, ..., tp—1, t,, are
used to compute the derivative. However, only the combination of samples over this
stencil is performed (multiplying them by relevant coefficients), while the real deriva-
tive value — which should be independent of the sample rate — would require to
divide this quantity by the sample period.

B.3.2 Proposed modifications

Use the real value of the derivative (i.e. divide by the sample period At), if possible
using a better method than linear interpolation, e.g. the finite difference method im-
plemented in the module ’ pipo finitedif ‘, which is more accurate and does not
introduce any latency). Update the concerned threshold values accordingly.

The following threshold should be updated: in the free spin detection subpatch, the
norm of the derivative of the angluar velocity should be lower than 4.0 rad.s~2 (in the
original version with an assumed sample rate of 100 Hz, the threshold value is 0.04
rad.s~! per sample).

No output stream value is modified.

B.4 Shake

B.4.1 Analysis

As for the module , the smoothing process at the end of the computation in-
troduces a dependency to the sample rate.



As for the module , the time derivation of the acceleration (jerk) intro-
duces a dependency to the sample rate.

For each dimension, the contribution to the shaking amount corresponds to the pro-
portion of jerk exceeding a threshold within a window of given size, which introduces

another dependency to the sample rate via the module .

B.4.2 Proposed modifications

To eliminate the sample rate dependency from the smoothing process, use the same
method as for the module . Here, the original parameters are f; = 100 Hzand
a =10 (i.e. a = 0.1), which leads to the following modification to implement:

1 1
o = = -
sin (271_%> sin (100 ar;sm(O.l))

s

To eliminate the sample rate dependency from the derivation of acceleration, use the
same method as for the module , i.e. use the real value of the derivative
by dividing by the sample period At. The threshold given as input parameter should
be updated to 10.0 m.s~2 instead of 0.1 m.s~2 per sample in the original version of
the module.

Finally, to eliminate the sample rate dependency due to the sliding window considered
for the proportion of jerk exceeding the updated threshold, the time equivalent should
be given as input instead of the window size, and the window size given as parameter
of the module should be computed according to the sample rate. In
the original analysis patch, two examples of window size are given: n =60 and n = 200,
corresponding respectively to 0.6 s and 2.0 s. Providing these durations (or any other
duration) as input, the relevant window size is given multiplying by the sampling fre-
quency (100 Hz in the original version of the module).

No output stream value is modified.

B.5 Intensity

B.5.1 Analysis

As for the modules ] freefall \ and ] shake |, the derivation of the acceleration (jerk)
or of the angular velocity (angular acceleration) given in input introduces a depen-
dency to the sample rate.

As described in Deliverable 4.2, we consider the input signal s(t) discretized as s,, at
time t,, (and such that ¢, 1 —t,, = 1/fs = At)and its time derivative s’ (t) discretized
as s,,. The output I, of the integration-like part of the module is then defined by the
following recurrence:

I 0
Iy = aIn+b5%2

It can be easily shown that the general term of the series (I,,) can be expressed as a
function of terms of the series (s!,) as follows:

n

I, = bz a" i)

i=1



where a and b are the parameters of the module . This expression cor-

responds to the approximation of the following integral quantity via the rectangle
method:

b r xT—t 4 2
I(T):E/O a s'(t)°dt

where T is the current time and a* = a'/At = ¢/fs.

B.5.2 Proposed modifications

To eliminate the sample rate dependency from the derivation of acceleration or an-
gular velocity, use the same method as for the module , i.e. use the real
value of the derivative by dividing by the sample period At.

For the integration-like part, use the following parameters: A = (a*)At — qoor =
a’7* instead of a, b unchanged, and multiply the output by the sample period.

Since the output of the derivation module is squared and used as input to the integra-
tion part, one could just divide the module’s output stream by At once (i.e. multiply
by fs) but the aim is to work with real derivation and integration, so the modules
’pipo delta‘ and ’pipo finitedif ‘ (which may be used instead) will embed in-
formation about the sample rate in the future (i.e. perform the division by the sample
period). Therefore it is better to keep the two aforementioned alterations clearly sep-
arated.

The modified version of the module will output a stream which value is equivalent to
the original module’s output stream value divided by At. This affects any downstream
threshold, such as in the module .

B.6 Kick

B.6.1 Analysis

The input of the module is the output of the module , which is
tackled above. Assuming that this input is independent from the sample rate, the
only dependency is introduced by the median filter module . How-
ever, since the value of the intensity output stream is modified, the threshold for kick
detection should also be taken care of.

B.6.2 Proposed modifications

As for the module , the sample rate dependency can be eliminated by taking
the time-domain equivalent to the window size. In the original version of the module,
the filter size is 9, which corresponds to 0.09 s for an assumed sample rate of 100 Hz.
The modified median filter size should be:

9fs
100

TNmedian = \‘ J + Oeven

9fs
100

is odd. Additionally, a minimum value of 3 may be set for nmedian-
Kick detection occurs when the difference between intensity given as input and its

where deven = 1 if L J is even and deven = 0 otherwise so that the median filter size



median over the given window exceeds a threshold originally set to 0.1. To take into
account the modification of the value of the intensity output stream (which is multi-
plied by fs, i. e. 100 Hz in the original version of the module), this threshold should
be setto 0.1 x 100 = 10.



	MusicBricks_D4.3_v1
	MusicBricks deliverable D4.3_APPENDIXA
	MusicBricks deliverable D4.3_APPENDIXB

